向量积的基本概念

表示方法

两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。

定义

向量积可以被定义为:

模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)

方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)

也可以这样定义(等效):

向量积|c|=|a×b|=|a||b|sin

即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。

相关内容